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Abstract— We propose VLASE, a framework to use semantic
edge features from images to achieve on-road localization.
Semantic edge features denote edge contours that separate
pairs of distinct objects such as building-sky, road-sidewalk,
and building-ground. While prior work has shown promising
results by utilizing the boundary between prominent classes
such as sky and building using skylines, we generalize this to
consider 19 semantic classes. We extract semantic edge features
using CASENet architecture and utilize VLAD framework to
perform image retrieval. We achieve improvement over state-
of-the-art localization algorithms such as SIFT-VLAD and its
deep variant NetVLAD. Ablation study shows the importance
of different semantic classes, and our unified approach achieves
better performance compared to individual prominent features
such as skylines. We also introduce SLC Marathon dataset,
a challenging dataset covering most of Salt Lake City with
sufficient lighting variations.

I. INTRODUCTION

In the pre-GPS era, location was not specified in latitude-
longitude coordinates. The typical description of a location is
based on certain semantic proximity, such as a tall building,
traffic light, or an intersection. While the recent image-
based localization methods rely on either complex hand-
crafted features like SIFT [1] or automatically learnt features
using CNNs, we would like to take a step back and ask the
following question: How powerful are simple semantic cues
for the task of localization? There is a general consensus that
the salient features for localization are not always human-
understandable, and it is important to capture special visual
signatures imperceptible to the eye. We show that simple
human-understandable semantic features, although extracted
using CNNs, provide accurate localization in urban scenes
and they compare favorably to some of the state-of-the-
art localization methods that employ SIFT features in a
VLAD [2] framework.

Figure 1 illustrates the basic idea of this paper. Given an
image from a vehicle, we first detect semantic boundaries,
the pixels between different object classes. In this paper,
we use the recently introduced CASENet [4] architecture
to extract semantic boundaries. The CASENet architecture
provides a multi-label framework where the edge pixels are
associated with more than one object classes. For example,
a pixel lying on the edge between sky and buildings will
be associated with both sky and building class labels. This
allows our method to unify multiple semantic classes as
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Fig. 1. Illustration of VLASE. Given images (left) from a vehicle, we
extract semantic edge features (middle). Different colors indicate different
combinations of object classes. The extracted semantic features are com-
pared to the features from geo-tagged images in a database to estimate the
location. In this example, the red and yellow circles on the map (right)
indicate the locations of the two given images. (The images are from the
KAIST WEST sequences captured at 9AM [3].).

localization features. The middle column of Figure 1 shows
the semantic edge features. By matching the semantic edge
features between a query image and geo-tagged images in a
database, which is achieved using VLAD in this paper, we
can estimate the location of the query image, as illustrated
on the Google map in the right of Figure 1.

Besides the matching between semantic edge features,
we also observed that in the context of on-road vehicles,
appending 2D spatial location information with the extracted
features (SIFT or CASENet) boosts the localization perfor-
mance by a large margin. In this paper, we heavily rely on the
prior that the images are captured from a vehicle-mounted
camera, and exploit edge features that are typical in urban
scenes. In addition, we sample only a very limited set of
poses for on-road vehicles. The motion is near-planar and
the orientation is usually aligned with the direction of the
road. It is common to make this assumption for accurate
vehicle localization in urban canyons, where GPS suffers
from multi-path effects.

We briefly summarize our contributions as follows:
• We propose VLASE, a simple method that uses seman-

tic edge features for the task of vehicle localization.
While prior methods use individual features such as
horizon, road maps, and skylines [5]–[8], we propose
a unified framework that allows the incorporation of
multiple semantic classes.

• We show that it is beneficial to augment semantic
features by 2D spatial coordinates. This is counter-
intuitive to prior methods that utilize invariant features
in a bag-of-words paradigm. In particular, we show
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that even standard SIFT-VLAD can be significantly
improved by embedding additional keypoint locations.

• We show compelling experimental results on two dif-
ferent datasets, including the public KAIST [3] and a
route collected by us in Salt Lake City. We outperform
competing localization methods such as standard SIFT-
VLAD [2], pre-trained NetVLAD [9], and the coarse
localization in [10], even with smaller descriptor dimen-
sions.

• We will release SLC Marathon dataset, a new chal-
lenging dataset covering most of Salt Lake City with
significant lighting variations.

II. RELATED WORK

The vision and robotics communities have witnessed the
rise of accurate and efficient image-based localization tech-
niques that can be complementary to GPS, which is prone to
error due to multi-path effects [11]. The techniques can be
classified into regression-based methods and retrieval-based
ones. Regression-based methods [12]–[14] directly obtain the
location coordinates from a given image using techniques
such as CNNs. Retrieval-based methods match a given query
image to thousands of geo-tagged images in a database,
and predict the location estimates for the query image
based on the nearest or k-nearest neighbors in the database.
Regression-based methods provide the best advantage in both
memory and speed. For example, methods like PoseNet [12]
do not require huge database with millions of images and the
location estimation can be done in super-real time (e.g. 200
Hz). On the contrary, retrieval-based ones are usually slower
and have a large memory requirement for storing images
or its descriptors for the entire city of globe. However, the
retrieval-based methods typically provide higher accuracy
and robustness [15].

A. Features

In this paper, we will focus on the retrieval-based ap-
proach, which essentially finds the distance between a pair
of images using extracted localization features. Based on
human understandability, we broadly classify the localization
features into the following two categories:
Simple Features: We refer to simple features as the ones
that are human-understandable: line-segments, horizon, road
maps, and skylines. Skylines or horizon separating sky from
buildings or mountains can be used for localization [5]–
[8]. Several existing methods use 3D models and/or omni-
directional cameras for geolocalization [6], [16]–[23]. Line
segments have been shown to be very useful for localization.
The localization can be achieved by registering an image with
a 3D model or a geo-tagged image. By directly aligning
the lines from query images to the ones in a line-based
3D model we can achieve localization [16], [24], [25],
[37]. Furthermore, even simply aligning high gradient pixels
can be extremely beneficial for visual odometry tasks [34].
Semantic segmentation of buildings has been used for regis-
tering images to 2.5D models [26]. Other simple localization
features include travel time stamps [36].

We can also use other human-understandable simple fea-
ture such as roadmaps or weather patterns to obtain localiza-
tion. Visual odometry can provide the trajectory of a vehicle
in motion, and by comparing this with the roadmaps, we can
compute the location of the vehicle [27], [28]. It is intriguing
to see that even weather patterns can act as signatures for
localizing an image [29].
Complex Features: The complex ones are visual patterns
extracted through hand-crafted feature descriptors or auto-
matically extracted ones using CNNs. These class of features
are referred to as complex ones since they are not human-
understandable, i.e, not easily perceptible to human eye. It is
possible to achieve localization in a global scale using GPS-
tagged images from the web and matching the query image
using a wide variety of image features such as SIFT, SURF,
and ORB [30]–[33].

The use of neural networks for localization is an old idea.
RATSLAM [38] is a classical SLAM algorithm that uses
a neural network with local view cells to denote locations
and pose cells to denote heading directions. The algorithm
produces “very coarse” trajectory in comparison to existing
SLAM techniques that employ filtering methods or bundle-
adjustment machinery. Kendall et al. [12] presented PoseNet,
a 23 layer deep convolutional neural network based on
GoogleNet [39], to compute the pose in a large-region at
200 Hz. CNN can be also applied to learn the distance metric
to match two images. As one can achieve localization by
matching an image taken at the ground level to reference
database of geo-tagged bird’s eye, aerial, or even satellite
images [40]–[43], such cross-matching is typically done
using siamese networks [44]. Recently, it was shown that
LSTMs can be used to achieve accurate localization in
challenging lighting conditions [45]. A survey of different
state-of-the-art localization techniques is given in [46],
and there has been releases of many newer datasets [15],
[47]. The idea of dominant set clustering is powerful for
localization tasks [48]. Many existing methods formulate
localization problem in a similar manner to per-exemplar
SVMs in object recognition. To handle the limitation of
having very few positive training examples, a new approach
to calibrate all the per-location SVM classifiers using only
the negative examples is proposed [49].

B. Vocabulary tree

In the retrieval based methods, we match a query image to
millions of images in a database. The computation efficiency
is largely addressed by bag-of-words (BOW) representation
that aggregates local descriptors into a global descriptor, and
enables fast large-scale image search [51]–[53]. Recently,
extensions of BOW including the Fisher vector and Vector
of Locally Aggregated Descriptors (VLAD) showed state-
of-the-art performance [2]. Experimental results demonstrate
that VLAD significantly outperforms BOW for the same
size. It is cheaper to compute and its dimensionality can be
reduced to a few hundreds of components by PCA without
noticeably impacting its accuracy.
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The logical extension to VLAD is NetVLAD, which
mimics VLAD in a CNN framework using a trainable gen-
eralized VLAD layer, NetVLAD, for the place recognition
task [9]. This layer can be used in any CNN architecture
and allows training via backward propagation. NetVLAD
was shown to outperform non-learnt image representations
and off-the-shelf CNN descriptors on two challenging place
recognition benchmarks, and improves over current state-
of-the-art compact image representations on standard image
retrieval benchmarks.

In this paper, we combine the above two categories by
localizing from human-interpretable semantic edge features
learnt from a state-of-the-art CNN [4]. Note that very re-
cently semantic segmentation is also used with either a
sparse 3D model [10] or depth images [50] for long-term 3D
localization. We show by experiments that VLASE improves
the semantic-histogram-based coarse localization in [10].

III. SEMANTIC EDGES FOR LOCALIZATION

This section explains our main algorithm of using seman-
tic edge features for localization. The main idea is very
simple. Similar to the use of SIFT features in a VLAD
framework, we use CASENet multi-label semantic edge class
probabilities as compact, low-dimensional, and interpretable
features. Similar to standard BOW, VLAD also constructs
a codebook from a databse of feature descriptors (SIFT
or CASENet) by performing a simple K-means clustering
algorithm on those descriptors. Here we denote M clusters as
C = {c1, . . . , cM}. Given a query image, each of its feature
descriptors xi is associated to the nearest cluster cj in the
codebook. The main idea in VLAD is to accumulate the
difference vector xi− cj for every xi that is associated with
cj . VLAD is considered to be superior to traditional BOW
methods mainly because this residual statistic provides more
information and enables better discrimination.

To detect the semantic edges, we use the recently intro-
duced CASENet architecture, whose code is publicly avail-
able 1. Given an input image I, we first apply a pretrained
CASENet to compute the multi-label semantic edge proba-
bilities Y(p) = [Y1(p), · · · ,YK(p)] for each pixel p ∈ I.
Here K is the number of object classes. Then we select
all edge pixels {q ∈ I|Yk(q) ≥ Te,∃k ∈ [1, · · · ,K]}, i.e.,
pixels that have at least one semantic edge label probability
exceeding a given threshold Te. Thus, for any image, we
can compute a set of K-dimensional CASENet edge features
(for the Cityscapes dataset, K = 19). We further augment
this K-dimensional feature by appending a 2-dimensional
normalized-pixel-position feature [qx/W, qy/H], where W
and H are the fixed image width and height, and qx and
qy are the column and row index respectively for a pixel q.
We will refer to such a K + 2 dimensional feature Ŷ as an
augmented CASENet edge feature.

Due to the often much larger number of edge pixels com-
pared to SIFT/SURF features in an image, to build a visual
codebook or vocabulary following the VLAD framework,

1http://www.merl.com/research/license#CASENet
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Fig. 2. CASENet edge feature and VLAD. Top: An example input image
(left) and its CASENet features (right). Each color corresponds to an object
class. Bottom: Visualization of a CASENet-VLAD vocabulary of M =
256 codewords/cluster centers, shown as color-coded dots. For the dot of
each cluster, its x-y positions correspond to Ŷ20 and Ŷ21, and its color is
computed from CASENet features Yk . The Voronoi graph (black edges with
small green nodes) shows the CASENet-VLAD division of the x-y image
space. The background of the bottom image is an average of CASENet
feature visualization from all images used to train the codebook. As the
background shows an averaged semantic on-road driving scene, it can be
seen that the colors of the dots in the cluster centers distribute similarly to
the colors of this average scene.

we run a sequential instead of a full K-means algorithm
(MiniBatchKMeans, implemented in the python package
scikit-learn) using all the augmented CASENet edge features
on one training image as a mini-batch. This is iterated over
the whole training image set for multiple epochs until it
converges to M centers, each in the K+2 dimensional space,
to form the trained CASENet-VLAD codebook. An example
is visualized in Figure 2.

To perform on-road place recognition, we first need to
process a sequence of images serving as the visual map,
i.e., the mapping sequence. This can be simply done by
extracting all augmented CASENet edge features on each
image and compute a corresponding M×(K+2) CASENet-
VLAD descriptor D using the trained codebook, with power-
normalization followed by L2-normalization. The CASENet-
VLAD descriptors for the mapping sequence are then stored
in a database. During place recognition, we repeat this
process for the current query image to get its CASENet-
VLAD descriptor and search in the mapping database for the
top-N most similar descriptors using cosine-distance. This
pipeline is further illustrated in Figure 3.

IV. DATASETS

We have experimented on 3 visual place recognition
datasets. The first two are called SLC Urban and SLC
Marathon, which were captured in Salt Lake City downtown.
The third is called KAIST, which is one of the routes from
the KAIST All-Day Visual Place Recognition dataset [3].
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Fig. 3. VLASE pipeline. All mapping images are first processed by CASENet, from which we can build a VLAD codebook using all CASENet features.
We then compute each image’s CASENet-VLAD descriptor D (the last two dimensions of each residual vector, i.e., D(:, 20) and D(:, 21), are visualized
as 2D vectors origin at the corresponding codeword/cluster center, i.e., Cm). During localization, we similarly compute the currently observed image’s
CASENet-VLAD descriptor, and query in the database for the top-N closest descriptors in terms of cosine distance. Note that while the geometry shape of
the three CASENet edges in column two are visually similar to each other, their corresponding CASENet-VLAD descriptors in the last column are more
discriminative, even only visualized by the last two dimensions.

SLC Urban SLC Marathon KAIST West
Fig. 4. The testing routes of our experiments.

A. SLC

We created our SLC Urban dataset by capturing two video
sequences in the downtown of Salt Lake City, with abun-
dance of objects belonging to the classes in the Cityscapes
dataset. The route length is about 15km, which is shown
in Figure 4 left. We used a Garmin dash-cam to collect
videos of the scenes in front of the vehicle. This dash-cam
stored the videos at 30 FPS, and the two sequences have
98513 and 89633 frames, which are captured between 15:00-
17:00 continually. We resized the image from the original
resolution 1920×1080 to 640×360 pixels. A special feature
of this dash-cam is that it also encodes the GPS coordinates
in latitude and longitude, which provides the ground truth of
our video frames. Since the frame rate of SLC sequence is
30 fps but only the first frame within every second has a GPS
coordinate, we sampled every 30 frames from each sequence.
We use the longer one as a database of 3284 images and
compute the VLAD codebook. The other sequence has 2988
sampled frames for querying. Similarly, we created a larger
dataset, SLC Marathon (Figure 4 middle): route length 46km,

24156 images as the database (captured between 19:00-
21:00), and 11663 images for querying (between 14:30-
16:30). Note that the sequences in this dataset were captured
at different times, and thus they have adequate lighting
variations for same locations, making it more challenging
for localization.

B. KAIST
The KAIST dataset was captured by Choi et al. [3] in

the campus of Korea Advanced Institute of Science and
Technology (KAIST). They captured 42 km sequences at
15-100Hz using multiple sensor modalities such as fully
aligned visible and thermal devices, high resolution stereo
visible cameras, and a high accuracy GPS/IMU inertial
navigation system. The sequences covered 3 routes in the
campus, which are denoted as west, east and north. Each
route has 6 sequences recorded at different times of a day,
including day (9 AM, 2 PM), night (10 PM, 2 AM), sunset
(7 PM), and sunrise (5 AM). As these sequences capture
various illumination conditions, this dataset is helpful for
benchmarking under lighting variations.
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TABLE I
ABLATION STUDY RESULTS ARE SHOWN IN THE FORMAT (a, b), WHERE

a DENOTES SLC URBAN AND b DENOTES SLC MARATHON.

Urban,Marathon Top-1 Accuracy Top-5 Accuracy
Removed 5m 10m 20m 5m 10m 20m

Road 53, 26 79, 48 91, 70 89, 45 96, 65 98, 80
Sidewalk 54, 26 80, 47 91, 68 87, 45 94, 64 96, 79
Building 50, 24 75, 44 86, 63 81, 41 90, 59 92, 76

Wall 50, 26 76, 47 87, 69 85, 45 92, 64 94, 80
Fence 54, 26 80, 48 90, 69 87, 45 94, 64 96, 80
Pole 51, 23 75, 44 88, 63 85, 42 93, 62 95, 75
Light 51, 25 75, 47 87, 68 84, 46 92, 65 95, 80
Sign 51, 26 76, 48 87, 69 85, 45 93, 64 95, 80
Veg 50, 24 74, 44 85, 63 83, 43 92, 61 95, 75

Terrain 51, 26 77, 47 88, 68 84, 44 91, 64 94, 80
Sky 50, 24 75, 43 85, 63 82, 41 91, 60 93, 76

Person 52, 27 79, 49 90, 71 87, 46 94, 65 96, 81
Rider 51, 26 78, 47 89, 69 87, 45 94, 64 96, 80
Car 54, 27 82, 48 93, 70 89, 46 97, 65 98, 82

Truck 53, 26 80, 48 91, 69 88, 45 95, 65 97, 80
Bus 51, 26 77, 47 88, 68 84, 44 92, 65 95, 79

Train 54, 26 79, 48 91, 69 87, 45 95, 64 97, 80
Motorcycle 51, 26 77, 48 88, 69 85, 45 92, 64 95, 80

Bicycle 52, 26 77, 47 89, 69 86, 44 94, 64 96, 80

Combinations 5m 10m 20m 5m 10m 20m
All 52, 26 78, 47 90, 69 87, 45 94, 64 96, 80

Static 56, 26 82, 47 94, 67 91, 44 98, 64 99, 80
Bld-Sky 49, 15 73, 30 85, 39 77, 28 91, 43 94, 54
Veg-Sky 57, 19 83, 38 95, 56 89, 35 96, 52 98, 70

Veg-Bld-Sky 55, 23 80, 44 91, 64 86, 41 94, 61 96, 79
All w/o (x,y) 44, 13 67, 23 76, 33 77, 26 86, 38 89, 50

Baselines 5m 10m 20m 5m 10m 20m
SIFT+(x,y) 32, 12 47, 22 60, 34 48, 25 61, 39 66, 52

SIFT 22, 1 36, 3 43, 6 32, 3 45, 6 48, 10
Toft [10] 32, 8 55, 16 63, 22 57, 17 73, 28 79, 36

We used two sequences captured on the west route, as
shown in Figure 4 right. The two sequences were captured
on 5 AM and 9 AM, which were under sunrise and daylight
conditions, respectively. The sequence at 9AM contains more
dynamic class objects than that at 5AM. We resized the
images from their original size 1280 × 960 to 640 × 480
pixels. The images were captured at 15 fps while the GPS
coordinates were measured at 10 FPS. Similar to SLC, we
sampled the route captured on 9AM as the database of 3254
images and computing the VLAD codebook, and the route
captured on 5AM for querying (2207 images).

V. EXPERIMENTS

A. Settings

CASENet: We use the CASENet model pre-trained on the
Cityscapes dataset [54]. It contains 19 object classes that are
also seen in our testing video sequences. We used nVidia
Titan Xp GPUs to extract CASENet features, which can
process around 1.25 images per second using CASENet
original code. We did not retrain CASENet for our datasets,
since getting ground truth semantic edges is a tedious manual
task. We observed that the pre-trained model was sufficient
to provide qualitatively accurate semantic edge features.
VLAD: We compared the CASENet-based semantic edge
features to SIFT [2], and used VLAD to aggregate both to
descriptors for image retrieval. To decide the number of clus-
ters for VLAD, we find the optimal cluster numbers within
16, 32, 64 and 256 by experiments, with MiniBatchKMeans
of at most 10,000 iterations. Our experiments showed that
64 clusters for CASENet features, 16 for SIFT on SLC

TABLE II
ABLATION STUDY RESULTS FOR THE KAIST DATASET.

Top-1 Accuracy Top-5 Accuracy
Removed 5m 10m 20m 5m 10m 20m

Road 72 84 90 88 91 94
Sidewalk 71 84 91 88 92 95
Building 71 84 90 88 91 94

Wall 73 85 90 87 91 94
Fence 73 86 92 90 93 96
Pole 70 84 89 87 91 94
Light 73 86 91 88 93 95
Sign 71 84 90 88 92 95
Veg 69 82 87 87 91 93

Terrain 72 84 90 88 91 94
Sky 73 85 91 88 93 95

Person 74 86 91 89 92 95
Rider 72 85 90 88 92 95
Car 77 88 93 91 94 96

Truck 72 86 90 89 93 94
Bus 74 86 90 89 92 94

Train 74 85 91 88 92 95
Motorcycle 72 85 90 88 92 95

Bicycle 73 85 90 88 92 95

Combinations 5m 10m 20m 5m 10m 20m
All 73 85 91 89 92 95

Static 77 88 92 91 94 96
Bld-Sky 62 74 83 82 87 91
Veg-Sky 73 83 88 87 90 93

Veg-Bld-Sky 73 84 89 87 91 93
All w/o (x,y) 64 78 85 83 88 91

Baselines 5m 10m 20m 5m 10m 20m
SIFT+(x,y) 84 89 91 90 92 93

SIFT 81 86 88 88 89 90
Toft [10] 60 73 80 78 85 88

Marathon dataset and 32 for SIFT on other datasets are the
most optimal, and thus we applied these cluster numbers for
further experiments. Note that although CASENet feature
dimension is much smaller than SIFT (19 vs. 128), there
are more CASENet features for each image as we get them
for each pixel. As a result, CASENet works better with more
clusters than SIFT. The VLAD of both were trained on CPUs.
With Intel(R) Xeon(R) E5-2640 CPU and 125GB of usable
memory, the training for 3000 images took about 30 minutes.
Evaluation criteria: We measured both top-1 and top-5
retrieval accuracy under different distance thresholds (5, 10,
15, and 20 meters). If any of these top-N retrieved images is
within the distance threshold of the query image, we counted
it as a successful localization.

B. Results and Ablation Studies

Figure 5 shows our main results compared with several
baselines. Figure 8 presents several best and worst matching
examples by our method. We also performed ablation studies
on the importances of 1) object classes and 2) spatial
coordinates used for feature augmentation, in Tables I and II.
Object classes: We first investigated the importance of
different subsets of the 19 Cityscapes classes for localization
(all augmented by 2D spatial coordinates) with two goals.
The first is to evaluate individual class contributions to
the accuracy. The second is to compare our approach with
existing ones that also use semantic boundaries but with
fewer classes. For example, one of the popular localization
cues is skylines (edges between building and sky) [5]–[8].

For SLC and in most cases, removing dynamic classes
(listed in the second half of the first block of Table I)
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Fig. 5. Localization accuracies. (a) and (b) represent the results for SLC Urban dataset while (c) and (d) represent the results for KAIST dataset. The
x-axis represents the distance threshold and the y-axis represents the accuracy. Non-CASENet results are shown using dashed lines. No weighting of
features are applied. Note for KAIST, the pretrained VGG-NetVLAD performances are very low (and even with retraining), thus we do not include them
here. Note CASENet is not retrained either.

yields better accuracy than all classes, e.g., removing cars
improves the accuracy by 2%. Note in some cases, removal
of some dynamic classes causes minor drops in accuracy,
e.g., removing motorcycle and bus, which we believe is
insignificant, and mainly due to the lack of those classes in
our dataset. As per our expectation, using only static classes
(the 11 out of 19 classes) of CASENet performs better than
using all classes, for both datasets. Specifically, building, sky
and wall are the top 3 individual contributors, as removing
them causes highest drop in the accuracy. Also using only
vegetation, sky and building is comparable to using all static
classes. Note that performances decrease for all methods in
SLC Marathon. This dataset is more challenging due to a
long portion of less discriminative suburb routes that contain
fewer buildings than vegetation.

For KAIST, vegetation seems to be the most important
individual class. Removing it causes the highest drop in
the accuracy. Building and sky classes individually does not
seem very significant. Again, using only static CASENet
features performs better than any other feature combination.
Spatial coordinates: Besides object classes and their prob-
abilities, we also tried removing the 2D-image-coordinate
augmentation from the feature descriptors for both CASENet
and SIFT. Surprisingly, this augmentation boosted the per-
formance of both SIFT and CASENet by a large margin:
SIFT+(x,y) vs. SIFT, and All vs. All w/o (x,y) in Table I
and II. While this result seems counter-intuitive due to the
loss of invariance in feature descriptors, the on-road vehicle
localization is a more restricted setup and such constraints
lead to high-accuracy localization.

A natural concern for such direct augmentation is the
weighting of spatial coordinates compared with object class
probabilities or SIFT features, which have larger dimensions.
Thus we investigate the effect of a weighted feature aug-
mentation as Ȳ = [αY1, · · · , αYK , (1−α)Yx, (1−α)Yy],
where K = 19 for CASENet and K = 128 for SIFT, Yx,Yy

indicate normalized 2D spatial coordinates. In Figure 6 and 7,
we show that the combination of the two achieves the best
performance, and higher weights should be given to spatial
coordinates due to a smaller number of dimensions.

In summary, CASENet-VLAD generally performs better
than SIFT-VLAD (and also augmented SIFT-VLAD for

SLC), although the augmentation sometimes makes SIFT
comparable to CASENet. For example, augmented SIFT
features performed better than CASENet on KAIST, since
without augmentation CASENet already performed worse
than SIFT (Figure 5). We conjectured the main reason
to be the different data distributions between the KAIST
and Cityscapes, leading to degraded quality of CASENet
features without domain adaption. Note that another deep
baseline [10], pretrained on the Cityscapes, also performs
worse than SIFT on KAIST.
Other deep baselines: We also compare with three deep
baselines: 1) Toft et al.’s coarse localization method [10],
which performs semantic segmentation using a pre-trained
network [55] and computes a descriptor by combining
histograms of static semantic classes as well as gradient
histograms of building and vegetation masks in six different
regions of the top half of the image; 2) VGG-NetVLAD [9];
and 3) PoseNet [12], a convolutional neural network that
regresses the 6-DOF camera pose from a given RGB image.
The results of the first deep baseline (our own implemen-
tation) and VGG-NetVLAD (the best pre-trained weights
from the Pittsburgh dataset provided in [9]) are shown to
be worse than CASENet in Figure 5. Note for KAIST, the
pretrained VGG-NetVLAD performances are very low, and
even with retraining the performance is still below 30%,
thus we exclude them from Figure 5. For the application of
PoseNet in this paper, instead of the 6-DOF output, we only
regress 3 values from an image: the x-, y-location, and the
orientation of the vehicle. Based on our initial experiments,
we observed that the performance of PoseNet is less than
50%. This is much lower than other methods tested in this
paper (Figure 5). We plan to investigate this further, but the
high error could be due to the fact that the restricted pose
parameters from the on-road vehicles (mostly straight lines
and occasional turns) is insufficient to train the network.

VI. DISCUSSION

We proposed a simple method to achieve high-accuracy
localization using recently introduced semantic edge fea-
tures [4]. While SIFT is one of the earliest feature descriptor
used for localization, SIFT-VLAD is still considered as the
state-of-the-art localization algorithm. We show significant
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Fig. 6. Effect of weighted spatial coordinate augmentation on SLC Urban (left) and KAIST (right). At the optimal α = 0.1, CASENet is still better than
SIFT.
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Fig. 7. Localization accuracies using weighted augmentation, with α = 0.1 found to be optimal for both SIFT and CASENet (on SLC Urban and KAIST).
Other settings are the same as in Figure 5. Note Toft [10] and NetVLAD are not weighted.
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Fig. 8. Successful and failed matches of CASENet+VLAD. The top 2 rows show good matches . The bottom 2 rows show two of the worst results
where the true distance is greater than 2 kms. In the 3rd row, the presence of dynamic object such as the train might lead to the high error.

improvement over the standard SIFT-VLAD, and the aug-
mented SIFT-VLAD method. While the CASENet features
are trained only on Cityscapes dataset, the pretrained model
was sufficient for achieving state-of-the-art localization ac-
curacy. Another interesting result that came out of our
analysis is that skyline (either from building and sky, or from
vegetation and sky) is a very powerful localization cue.

While the main localization idea is simple, we believe that
this work unifies several ideas in the community. Further-
more, it has already been shown that semantic segmentation
and depth estimation are closely related to each other [56],

[57]. This paper takes a step towards showing that semantic
segmentation and localization are also closely related, mak-
ing one more argument towards holistic scene understanding.
We will release the SLC datasets and code for research
purposes.
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